
Propagating Ideal Kernel Eigen-function for
Semi-supervised Learning

Abstract

Semi-supervised kernel is a useful tool towards lending theabundant theories and
algorithms in kernel methods to semi-supervised learning.Currently, a large fam-
ily of algorithms relies on spectral transformations, i.e., the new kernel is built
on the eigenvectors of the empirical kernel matrix (such as graph Lapacian) with
rectified eigenvalues. Though demonstrating lot of success, these algorithms are
computationally demanding, and the empirical kernel eigenvectors can be inaccu-
rate due to various practical factors. This paper pursues a new direction in which
the desired eigenvectors are computed via propagating the eigenfunction of ideal
kernel. The extrapolation builds upon important graph structures encoded in the
data, and easily takes into account the resultant matching with the ideal kernel.
The inclusion of supervised information in computing the eigenvectors, on the
other hand, make them more reliable and less dependent on thechoice of empir-
ical kernels. Our algorithm demonstrates improved target alignment and general-
ization performance. It requires only linear time and spaceconsumptions, and is
empirically orders of magnitudes times faster than the counterpart algorithms.

1 Introduction

Semi-supervised learning (SSL) is a useful learning scenario where availability of large volumes of
unlabeled samples is shown to boost the learning performance with only limited supervision. Among
the various directions that have been pursued on this topic,semi-supervised kernel design turns to a
promising one because it allows the abundant theories and algorithms in kernel methods to be lent
directly in solving SSL problem. A large family of algorithms for semi-supervised kernel relies on
spectral transformation, where the eigenvectors of the empirical kernel matrix (mostly notably the
graph Lapacian) are used together with the rectified eigenvalues to build the new kernel.

Given ann × n similarity matrix K (or kernel matrix), the graph Lapacian is computed asL =
D−W , whereD ∈ R

n×n is a (diagonal) degree matrix such thatDii =
∑n

j=1 Kij . The normalized

graph Lapacian is defined as̃L = I−D−1/2KD−1/2, whereI is identity matrix. The (normalized)
graph Lapacian matrix imposes important smoothness constraints over the graph. In particular, a
smaller eigenvalue of it corresponds to a smoother eigenvector over the graph, i.e., the entries of the
eigenvector corresponding to neighboring sample points are close to each other. Such smoothness
is very useful for predicting the actual class labels. Basedon this property, a general principle is
applied in spectral transformation to build semi-supervised kernel [7],

K̃ =

n∑

i=1

r(λi)φiφ
⊤
i . (1)

Hereλi’s (i = 1, 2, ..., n) are eigenvalues of the graph LapacianL ∈ R
n×n sorted in an ascending

order,φi’s are the corresponding eigenvectors, andr(·) is a non-increasing function which enforces
larger penalty for less smooth eigenvectors. Various choice of the transformr has been proposed
in the literatures. For example, the diffusion kernel [4] corresponds tor(λ) = exp(−σ2

2 λ); the
Gaussian filed kernel [8] usesr(λ) = 1

λ+ǫ . For cluster kernel [1], the eigenvectorsφi’s are based

on the degree-normalized kernel matrixS = D−1/2KD−1/2. SinceS and L̃ have the same set
of eigenvectors, with the corresponding eigenvalues (pair) adding up to 1,r(·) is chosen as a non-
decreasing function in the cluster kernel, such as the linear r(λ) = λ, the stepr(λ) = λi if i ≤ k,
andr(λi) = 0 if i > 0; or the polynomialr(λ) = λd.
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Recently, the empirical kernel alignment [2] is proposed toevaluate the fitness of a kernel to the class
labels via the use of “ideal kernel”K(x, z) = y(x)y(z), wherey(x) is the target concept (the class
label). It has been shown that the alignment score is sharplyconcentrated and has a close connection
with the generalization performance of a classifier [2]. Therefore maximizing the alignment with
the ideal kernel proves a general and effective way for semi-supervised kernel design. For example,
a semi-definite programming formulation has been proposed in [6] to learn a kernel matrix̃K that
is maximally aligned with the ideal kernel

max
K̃

〈K̃tr, yy⊤〉, subject to‖K̃‖F = 1, K̃ � 0, trace(K̃) = 1. (2)

HereK̃tr is the block ofK̃ corresponding to the training samples,y is the vector of training labels.
In particular, if the kernel matrix̃K is restricted to be spanned by the eigenvectors of the Laplacian,
i.e., K̃ =

∑n
i=1 µiφiφ

⊤
i , then the formulation (2) will be reduced to a quadraticallyconstrained

quadratic programming (QCQP) [6, 5]. This avoids the need tochoose parameters inr(·), and
the nonparametric transform will lead to more flexible kernels. In [5], an order constraint on the
transformed eigenvalue is further considered, which leadsto the following optimization problem:

max
µ

vec(yy⊤)⊤Mµ

subject to ‖Mµ‖ ≤ 1, µi ≥ 0,

µi ≥ µi+1, i = 1, 2, ..., n− 1.

Hereµ is the vector of transformed eigenvaluesµi’s, vec(·) is the column vectorization operator of a
matrix,M = [vec(K1,tr), ..., vec(Km,tr)] whereKi,tr is the sub-block ofKi = φiφ

⊤
i correspond-

ing to the labeled samples, andφi’s are the eigenvectors of the graph Lapacian sorted in ascending
order based on their corresponding eigenvalues. The order constraint reflects important prior belief
that smoother eigenvectors should be given higher priorityin building the kernel, and empirically it
has shown improved behavior over parametric and purely nonparametric spectral transforms [5].

Lots of empirical successes have been observed with the family of semi-supervised kernels based
on spectral transform. However, the optimization procedure involved can be quite expensive. For
example, computing the eigenvalue decomposition of the Lapacian already takesO(n3) time and
O(n2) memory, and the complexity of QCQP and SDP is even more demanding. Another concern
is that building a kernel solely based on transform of the spectrum may be restrictive in terms of
acquiring the desired kernel. Note that, eigenvectors haven(n − 1) degree of freedom while eigen-
values only haven, therefore the eigenvectors play a larger role in “shaping”the kernel matrix.
However, eigenvectors of empirical kernel matrix (such as the graph Laplacian) can be inaccurate
due to various practical factors such as noise, kernel parameters, or class separability. If these eigen-
vectors are simply left intact, their intrinsic flaws would inevitably inherit in building the new kernel,
leading to hampered alignment with the target concept and henceforth degenerated performance.

To solve these problems, in this paper we proposed a new way for designing semi-supervised kernels.
We do not grab the eigenvectors directly from the graph Lapacian; actually we do not even attempt to
learn a transform on them (for target alignment) because intrinsic flaws would still persist. Instead,
a set of desired eigenvectors are newly computed by propagating ideal kernel eigenfunctions to the
overall data. The extrapolation builds upon important graph structures encoded in the input patterns,
and at the same time takes into account the resultant matching with the ideal kernel. Due to the
incorporation of the supervised information in computing the eigenvectors, we observe improved
target alignment and generalization performance. The proposed method is very efficient, where the
eigenvectors needed only depends on the number of classes. It scales linearly with the sample size
and dimension, and runs orders of magnitudes times faster than existing approaches.

The rest of the paper is organized as follows. In section 2, weanalyze properties of the ideal kernel
matrix and introduce the concept of kernel eigenfunction extrapolation. Based on these background,
in section 3 we proposed a new algorithm for semi-supervisedkernel design by propagating the ideal
kernel eigenfunctions. In section 4, we compare the performance of our approach with a number of
algorithms based on spectral transformations. The last section concludes the paper.
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2 Ideal Kernel and Eigenfunction Extrapolation

In this section we give a detailed analysis on the eigen-system of the kernel matrix. First, we show
that the eigenvectors of the ideal kernel provides a piecewise constant embedding which perfectly
separates different classes. Although this is for the idealsituation, it provides a generally useful
insight on the “discriminating roles” of the kernel matrix.Then we introduce some background on
the kernel eigenfunction and its extrapolation property, which will be used in our algorithm.

2.1 Ideal Kernel

Kernel matrix is the basic building block of kernel machines, which describes the pairwise sample
similarities. Here we examine how the kernel matrix provides the discrimination crucial for learning.
For simplicity, we consider the ideal kernel. But the intuition applies to general kernel matrix as well.
In a multi-class problem, the ideal kernel matrix is block-diagonal as follows

K∗ =






11′

n1
0 . . . 0

0 11′

n2
· · · 0

.

.

. . . .
. . .

.

.

.
0 . . . 0 11′

n
k




 . (3)

Herenk is the number of samples in thekth class, and we have assumed that samples are ordered
such that the firstn1 samples belong to the first class, the followingn2 samples belong to the second
class, and so on. The eigen-system of the ideal kernelK∗ has the following properties.

Proposition 1. Given the ideal kernelK∗ (3) withC clusters and corresponding cluster sizenk ’s;

• the dominantC eigenvalues are non-zero, each corresponding to the size ofone class; the
restn − C eigenvalues are zeros.

• thekth eigenvectorv∗k (1 ≤ k ≤ C) is v∗k(i) =







1√
nk

i−1∑

k=1

nk + 1 ≤ i ≤
i∑

k=1

nk

0 otherwise
.

Proof. Let the eigenvalue decomposition of the ideal kernel matrixbe K∗v∗ = λ∗v∗. Note that
K∗ only hasC different rows (orthogonal to each other). Therefore it hasrank C with n − C
zero eigenvalues. On the other hand, note that theith entry ofv equals 1

λ∗
K∗(i, :)v∗, andK∗ has

a block-wise constant structure. Thereforev∗ is piecewise constant. Letv∗ be written asv∗ =
[v1, ..., v1
︸ ︷︷ ︸

n1

v2, ..., v2
︸ ︷︷ ︸

n2

, ..., vk, ..., vk
︸ ︷︷ ︸

nk

]′. Then the eigensystem can be written as a equation group







n1v1 = λ
∗

v1

n2v2 = λ
∗

v2

... ... ...

nkvk = λ
∗

vk

(4)

Each equation in (4) gives rise to two conditions:λ = nk, or vk = 0. For the whole equation
groupto hold true, however, it’s impossible to setλ = nk for k = 1, 2, ..., C, since the size of
different classes can be different. The only feasible way isto setλ equal to one of thenk ’s, λ = nk0

,
and at the same time setvk = 0 for all thek 6= k0. There areC different ways to choosek0, i.e., for
eachk0 = 1, 2, ..., C, the eigenvalueλ = nk0

; as to the eigenvector, all the entries corresponding
to classk (k 6= k0) will be zero, and entries corresponding to classk0 will be 1√

nk0

(since they are

equal and should normalize to 1). This completes the proof.

Proposition 1 shows that the eigenvectors of the ideal kernel corresponding to the dominantC eigen-
values will map different classes ontoC points lying exactly on theC orthogonal coordinate axes,
which provides the strongest discriminating information.On the other hand, the eigenvalues only
signify the “strength” of theCth cluster. Actually, even the eigenvalues were changed arbitrarily
(under positivity constraint), the resultant (ideal) kernel matrix is still block diagonal, and can be
used to produce exactly the same classification result when fed to in a kernel machine. In other
words, the discrimination powers of the kernel matrix is largely manifested by its eigenvectors.
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Although the eigenvectors of the ideal kernel provide very useful discriminating information, it is
only available on the training examples. Therefore a natural path is to “expand” this ideal infor-
mation to the whole data set. As will be discussed in the next part, this can be achieved based on
the eigenfunction extrapolation. Note that based on the ideal kernel, we can also compute the ideal
graph LapacianL∗ = D∗ − K∗, whereD∗ ∈ R

m×m is the degree matrix computed based onK∗,
or the normalized onẽL∗ = I − (D∗)−1/2K∗(D∗)−1/2. Due to the block-wise constant nature of
K∗, the eigenvectors ofL∗ andL̃∗ are also piecewise constant and provide perfect embedding for
class discrimination (detailed derivations are similar tothose for the ideal kernel and skipped here).
In other words, they have the same discriminating power as the ideal kernel matrix. Therefore in
this paper we simply focus on the ideal kernel matrix.

2.2 Eigenfunction Expansion

Let A be a linear operator on a function space. The eigenfunctionf of a linear operator is any non-
zero function in that space that returns itself from the operator except for a multiplicative scaling
factor, i.e.,Af = λf , whereλ is called the eigenvalue. In this paper, we are interested inthe case
whereA is a symmetric, positive semi-definite kernelK(x, z). The corresponding eigenfunction
φ(·), given the underlying sample distributionp(x), is defined as

∫

K(x, z)φ(x)p(x)dx = λφ(z). (5)

The standard numerical method to approximate the eigenfunctions and eigenvalues in (5) is to re-
place the integral with the empirical average

∫

K(x, z)p(x)φ(x)dx ≈
1

n

n∑

i=1

K(xi, z)φ(xi). (6)

By choosingz = xi for i = 1, 2, ..., n, equation (6) extends to a matrix eigenvalue decomposition
Kv = λv, whereK is the kernel matrix defined asKij = K(xi, xj) for 1 ≤ i, j ≤ n, andv is the
discrete counterpart ofφ in thatφ(xi) ≈ v(i). Then the eigenfunction can be extended as follows

φ(z) ≈
1

nλ

n∑

i=1

K(xi, z)v(i). (7)

This is known as the Nyström extension [10], which means that the eigenvectors of the empirical
kernel matrix evaluated on a finite sample set can be used as approximators to the eigenfunction of
the linear operator. Interestingly, (7) is proportional tothe projection of a test point computed in
kernel PCA [9]. The approximation can be justified by examining the convergence of eigenvalues
and eigenvectors as the number of examples increases [3, 9].

Equation (7) allows us to extrapolate the ideal kernel eigenfunction from the set of training examples
to the whole data set. Suppose we are given the labeled setXl = {xi}

m
i=1 and the unlabeled data

Xu = {xi}
n
i=m+1. Then, in order to expand the ideal kernel eigenfunction to the whole data set,

we can simply use then × m extrapolation matrixKnm = [Kll Klu]⊤, whereKll ∈ R
m×m

is the kernel evaluated on the labeled set, andKlu ∈ R
m×(n−m) is that evaluated between the

labeled and unlabeled samples, and multiply it with the ideal kernel eigenvectors (the re-scaling of
the eigenvalues can be ignored). Note that ideally, the extrapolation is best achieved by extracting
the sub-blockKnm from ideal kernel matrix. However, since such knowledge is not available for
training, we can only turn to the empirical kernel matrix forthe extrapolating purpose.

3 Propagating Ideal Kernel Eigenfunctions

As has been discussed, eigenvectors of the kernel matrix play a major role in shaping the kernel
matrix. Therefore, “better” eigenvectors are expected to span a kernel matrix that gives rise to better
performance. However, current approaches only rectify thespectrum of the kernel matrix while
keeping the eigenvectors intact. Due to various practical factors, such as noise, choice of kernel
types or parameters, and the class separability, eigenvectors of the empirical kernel matrices are
almost always “contaminated” and will deviate from the ideal ones. As a result, the kernel built
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upon such eigenvectors may only provide restricted discrimination. Of course the spectral transform
can “correct” the imperfect kernel matrix to make it better aligned to the target. However the small
degrees of freedom (compared with that of eigenvectors) make such correction limited.

Motivated from these concerns, we consider the scenario where the desired set of eigenvectors is
newly computed in building the semi-supervised kernel. Onepossibility would be learning a para-
metric (such as linear) transform on the eigenvectors of thegraph Lapacian for better alignment.
However, eigenvectors computed from the empirical kernel matrix can be inaccurate, and some in-
trinsical flaws may likely survive a parametric transform toaffect the alignment; on the other hand,
the eigenvalue decomposition of ann × n matrix is too expensive for large problems. Therefore,
we follow a more direct and efficient way that obtains the desired eigenvectors by “propagating” the
eigenfunctions of the ideal kernel to the whole data set. More specifically, letΦ∗ ∈ R

m×C be the
eigenvectors of the ideal kernel matrixK∗ (each column is one eigenvector), andΦ ∈ R

n×C be the
desired eigenvectors that will be used to span the ultimate kernel. Then we want to seek an extrapo-
lation matrixT ∈ R

n×m such that the desired eigenvectors can be obtained viaΦ = T · Φ∗. Here,
a simple choice of the extrapolation matrixT, as has been discussed in Section 2, is the sub-block
Knm = [Kll Klu]⊤. We have the following proposition on the property of such extrapolation.

Proposition 2. Let the extrapolation matrix beT = Knm. Then the resultant eigenvectors will be
smooth with regard to the graph structures. More specifically,

‖Φ(i, :) − Φ(j, :)‖2
F ≤ ρ · ‖xi − xj‖

2,

whereρ = lγ‖Φ‖2
F is a constant.

Proof. Here we used the property(K(x1, z) − K(x2, z))2 ≤ γK‖x1 − x2‖
2. We sketch the proof

for some popular kernels. For RBF kernelK(x, z) = κ(‖x − z‖), |K(x1, z) − K(x2, z)| ≤
κ′(ξ)|‖x1 − z‖− ‖x2 − z‖| ≤ κ′(ξ)‖x1 − x2‖, where we used the middle value theorem in calculus
and the triangular inequality, andγ can be chosen asmaxξ |κ

′(ξ)|; for linear or polynomial kernel
K(x, z) = (x⊤z + ǫ)d, |K(x1, z) − K(x2, z)| ≤ κ′(ξ)|(x1 − x2)

⊤z| ≤ κ′(ξ)‖x1 − x2‖ · ‖z‖, and
γ can be chosen asdRd, with R the maximum of the two: pairwise sample distances, and sample
(vector) norms. With this inequality, we have‖Φ(i, :)−Φ(j, :)‖2

F = ‖(K(i, :) − K(j, :)) · Φ∗‖
2
F ≤

∑l
k=1 (K(xi, xk) − K(xj , xk))

2
· ‖Φ∗‖2

F ≤ ρ · ‖xi − xj‖
2. This completes the proof.

Proposition 2 indicates that, entries of the extrapolated eigenvector on two samples,xi andxj , will
have a difference that is bounded by the input space distance‖xi −xj‖. Therefore the eigenvector is
expected to be smoothly varying with regard to the graph structures, which is a desirable property for
predicting class labels. We can also divide each row ofKnm by the sum of the entries in that row to
enforce an extra level of smoothness, which prevents the numerical fluctuations of the eigenvector.

Note that the extrapolation not only extends the eigenfunction to the unlabeled samples, but also
simultaneously “re-estimates” the eigenfunction on the training samples. Therefore, a natural re-
quirement for the extrapolation is that the reconstructed eigenfunction should be consistent with
the ideal kernel eigenfunction (on the training samples), which is similar in spirit to kernel target
alignment. To achieve this, we introduce an extra linear transformP ∈ R

l×l on the extrapolation
matrix Knm, i.e., T = KnmP . This linear transform imposes a global, consistent distortion on
Knm for both the labeled and unlabeled set of samples. Based on the transformT, the extrapolated
eigenvectors on the labeled set can be written asΦtr = KllPΦ∗. In order to makeΦtr andΦ∗ close,
obviously, we should chooseP = K−1

ll . In practice, to avoid numerical instabilities, we choose
P = (Kll +σI)−1, whereI is the identity matrix andσ is a small positive number. Then, the desired
eigenvector (on all the data points) can be obtained as

Φ =

[
Kll

Kul

]

(Kll + σI)−1 · Φ∗, (8)

and the corresponding kernel matrix isΦΦ⊤. Here, for simplicity we set all theC eigenvalues to be
unity, since as is shown in Section 2, the most important discriminative information has already been
encoded in the eigenvectors. It’s interesting to note that equation (8) is in the form of kernel ridge
regression, i.e., the labeled setXl is used as the training samples to predict the unlabeled points.

We illustrate the effect of the normalization(Kll + σI)−1 on the eigenfunction extrapolation. We
choose 100 USPS digits (the first 50 are “4” and next 50 are “9”)and randomly choose 30 for
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Figure 1: Effect of the normalization term on the extrapolation of eigenfunctions. Gray curve are
extrapolated eigenvector and red crosses denote labeled samples. By normalization, entries of the
eigenfunction belongs to the same classes are “squeezed” tothe same value; while those for different
classes are pushed apart.

labeling. Then we extend the ideal kernel eigenvectorΦ∗ ∈ R
30×1 to Φ ∈ R

100×1. Figure 1 shows
the result with and without the normalization. As can be seen, direct extrapolation usingT = Knm

may not guarantee that the extrapolated entries have similar values for samples in the same class;
using the extrapolationT = Knm(Kll + σI)−1 can guarantee that the reconstructed eigenfunction
has almost the same value as the class labels on the training set, and the discrimination between
classes is also improved.

With the introduction of the normalization term, the smoothness property in Proposition 2 still holds,
but the constantρ will be re-scaled by the Frobenius norm‖P‖F = ‖(Kll + σI)−1‖F . As can
be seen, the regularization imposed byσI can bound the magnitudes of the smoothness factor, or
else‖K−1

ll ‖F will approach infinity if Kll is singular. Actually, this also helps “strengthen” the
connection between the eigenfunction on the labeled and unlabeled samples, which guarantees that
a good alignment on the training set can transfer to that of the testing samples. In the extreme
caseσ → +∞, T will be the same asKnm (up to a scaling difference). The specific level of
“concentration” of alignment will depend on the extrapolation matrix T applied, and a rigorous
theoretical analysis will be provided in the future to shed light on such relationship. In practice, we
simply fix σ = 10−3 in all our experiments, which gives consistently good performance.

At last we want to emphasize the computational efficiency of our method. Note that the number
of eigenvectors needed in our algorithm equals the number ofclasses. In comparison, the number
of eigenvectors used in spectral transformations is usually chosen manually and much larger. On
the other hand, our algorithm needs not perform the eigenvalue decomposition of then × n kernel
matrix, thereby avoiding the computational bottleneck forthe whole family of algorithms based on
spectral transforms. The time complexity of our method isO(nmC + m3), wheren is the sample
size,m the training set size, andC the number of classes (the expansion of the ultimate kernel matrix
that takesO(n2) time is common for all semi-supervised kernel design schemes if classification is
performed). Empirically, our algorithm is tens to hundredsof times faster than the counterparts.

4 Experiments

In this section, we compare the following semi-supervised kernels: (1) cluster kernel [1], wherer(·)
is chosen as linear functionr(λ) = λ; (2) diffusion kernelr(λ) = exp(−λ/c) [4]; (3) gaussian
field kernelr(λ) = 1

λ+ǫ [8]; (4) our approach; (5) non-parametric graph kernel [5] using the first

p = 0.1n eigenvectors from the LaplaciañL. Evaluation is based on the alignment on the test set
and the classification performance of standard SVM using thelearned kernel. We tested 21 data
sets from some machine learning benchmark data sets1. We used the Gaussian kernelG(x, z) =
exp(−‖x − z‖2 · b) in all our experiments. The parameters are chosen as follows. For the kernel
width, we first computeb0 as the inverse of the average squared pairwise distances, and then choose

1semi-supervised learningwww.kyb.tuebingen.mpg.de/ssl-book/; libsvm datawww.cse.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 1: Classification Performance semi-supervised kernel design schemes. For each cell, the top
row is the mean/std of the kernel alignment score (in[0, 1]) on the test set, and in bracket is the
averaged time consumption (in seconds); the bottom row is the mean/std of classification error (%).

Data Non-paramatric Ours Cluster Kernel Diffusion Kernel Gaussian-field
size/dim Graph Kernel linear Kernel
Digit1 0.29±0.07 (84.9) 0.82±0.02 (0.3) 0.13±0.005 (2.4) 0.10±0.001 (13.0) 0.14±0.001 (12.6)

1500×241 4.31±1.93 4.89± 0.85 5.37±1.23 6.13±1.63 3.82±1.23
USPS 0.23±0.08 (74.9) 0.66±0.04 (0.3) 0.43±0.001 (2.5) 0.06±0.001 (16.0) 0.06±0.01 (12.7)

1500×241 7.47± 4.41 6.64±1.27 6.56±1.02 7.27±0.59 9.81±0.49
COIL2 0.11±0.005 (73.4) 0.55±0.07 (0.3) 0.10±0.001 (2.4) 0.05±0.003 (8.4) 0.07±0.00 (5.3)

1500×241 18.49±2.47 13.44±2.41 18.51±4.66 19.08±2.05 19.32±1.89
BSI 0.07±0.003 (9.9) 0.14±0.04 (0.1) 0.04±0.001 (0.2) 0.07±0.003 (0.4) 0.07±0.002 (0.5)

1500× 241 32.95±3.38 32.99±3.10 42.02±2.89 33.58±2.83 34.85±2.75
COIL 0.01±0.001 (199.5) 0.11±0.005 (x) 0.08±)0.002 (2.58) 0.06±0.001 (8.3) 0.07±0.001 (5.5)

1500×241 21.90±3.24 9.14±0.96 10.89±1.12 11.67±1.43 11.75±1.49
g241n 0.40±0.003 (108.2) 0.33±0.03 (0.3) 0.03±0.007 (2.5) 0.04±0.00 (20.3) 0.04±0.00 (6.7)

1500×241 13.64±1.28 24.11±1.73 26.59±3.96 19.68±1.52 18.61±1.75
Text 0.13±0.01 (181.0) 0.30±0.02 (4.71) 0.03±0.001 (68.1) 0.03±0.00 (208.0) 0.03±0.004 (130.7)

1500×11960 25.55±1.65 23.42±1.46 32.90±6.64 24.89±1.81 26.78±4.88
usps38 0.48±0.004 (77.3) 0.84±0.02 (0.3) 0.12±0.001 (1.6) 0.11±0.001 (6.8) 0.11±0.001 (4.5)

1200×256 4.82±1.33 2.82±0.83 5.10±0.89 6.06±1.01 6.06±0.85
usps49 0.40±0.13 (82.1) 0.86±0.01 (0.3) 0.09±0.001 (1.9) 0.08±0.001 (9.3) 0.07±0.001 (8.9)

1296×256 2.83±0.92 1.98±0.52 6.29±2.11 8.26±0.83 10.67±1.24
usps56 0.48±0.06 (80.0) 0.86±0.01 (0.3) 0.12±0.001 (1.7) 0.09±0.003 (18.2) 0.11±0.001 (5.0)

1220×256 2.87±0.92 2.44±0.59 3.89±1.57 3.85±0.97 5.79±1.06
usps27 0.58±0.004 (101.8) 0.91±0.006 (0.3) 0.37±0.001 (2.3) 0.10±0.001 (11.8) 0.13±0.001 (6.9)

1376×256 1.79±0.42 1.21±0.25 1.80±0.25 2.28±0.56 4.80±1.29
odd/even 0.21±0.008 (419.0) 0.65±0.03 (0.4) 0.12±0.001 (8.8) 0.03±0.004 (38.5) 0.08±0.00 (22.3)
2007×256 10.14±2.11 9.58±1.56 14.59±1.49 14.08±2.04 15.64±2.91
adult1a 0.28±0.02 (116.7) 0.36±0.04 (0.3) 0.29±0.001 (2.0) 0.25±0.002 (13.9) 0.04±0.00 (18.9)

1605×123 26.90±1.75 23.84±2.13 24.35±1.98 31.39±2.56 31.89±3.00
w1a 0.22±0.11 (155.4) 0.34±0.08 (0.3) 0.07±0.00 (3.8) 0.12±0.00(31.2) 0.17±0.00 (22.6)

2477×300 24.78±8.97 20.45±6.17 46.33±28.06 16.98±9.32 8.07±2.49
sonar 0.17±0.03 (3.7) 0.57±0.07 (0.1) 0.10±0.01(0.1) 0.10±0.004 (0.2) 0.10±0.004 (0.4)

208×60 21.11±3.26 14.57±3.24 15.88±3.74 14.16±3.06 22.70±3.62
australian 0.39±0.07 (7.53) 0.55±0.02 (0.2) 0.02±0.00 () 0.16±0.01 (1.5) 0.16±)0.004 (1.4)
690×14 14.56±0.67 13.19±0.64 14.45±1.21 18.48±2.92 14.93±1.31
diabetes 0.16±0.06 (34.75) 0.28±0.03 (0.1) 0.17±0.003 (0.3) 0.05±0.001 (4.8) 0.06±0.001 (1.5)
768×8 26.14±1.82 25.67±1.87 27.20±1.64 28.84±1.74 29.95±2.02
splice 0.13±0.004 (53.6) 0.32±0.03 (0.1) 0.02±0.003 (0.3) 0.002±0.00 (4.2) 0.05±0.00 (4.1)

1000×60 23.75±2.55 24.49±1.85 26.53±2.58 24.48±1.48 24.17±1.46
german 0.03±0.01 (27.5) 0.19±0.04 (0.1) 0.20±0.00 (0.3) 0.19±0.003 (0.6) 0.04±).01 (2.5)
1000×24 32.54±3.92 30.94 ±2.48 32.24±3.31 36.99±3.47 36.86±3.21

svmguide1a 0.28±0.01 (436.3) 0.68±0.14 (0.2) 0.23±0.03 (4.6) 0.07±0.00 (86.7) 0.10±0.001 (38.9)
3089×4 5.82±1.80 5.10±0.97 5.73±0.51 6.24±1.66 7.13±1.75

liver 0.07±0.007 (11.0) 0.12±0.03 (0.1) 0.03±0.01 (0.1) 0.04±0.00 (0.6) 0.06±0.002 (0.5)
345×6 33.67±3.85 32.23±3.69 38.14±3.95 38.46±3.16 37.69±3.64

b amongb0 · { 1
25 , 1

10 , 1
5 , 1, 5, 10, 25} that gives the best performance. The parameterc andǫ are

chosen from{10−5, 10−3, 10−1, 1} and{10−2, 10−1, 1, 10, 102}, respectively. For each data, the
algorithms are repeated 30 times with 50 labeled samples randomly chosen for each class. Results
are reported in Table 1, including time consumption, alignment score, and classification error.

As can be seen from Table 1, our algorithm gives competitive performance on most data sets. It
is also the most efficient and can be hundreds of time faster those algorithms based on parametric
or nonparametric transforms. We note that the cluster kernel using linear spectral transform is also
quite efficient, because it only needs to compute the normalized kernel matrix but not the eigenvalue
decomposition. However the performance is inferior. Our algorithm gives high alignment score for
most of the data sets. On some data sets (e.g. splice), our algorithm has a lower prediction accuracy
but higher alignment. This is because the classifier used (SVM) involves complex optimization
while the connection between kernel alignment and the generalization performance is currently only
shown for simple classifiers like the Parzen window [2].

We observe that algorithms using spectral transforms are relatively sensitive to the kernel para-
meter. Although the kernel target alignment can somewhat “correct” the imperfect kernel ma-
trix, the small degrees of freedom of the eigenvalues (compared with eigenvectors) may limit such
corrections. In comparison, our approach compute the desired eigenvectors via propagating the
ideal kernel eigenfunction and is therefore more robust. Figure 2 plots the classification perfor-
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mance of different semi-supervised kernels w.r.t. the RBF kernel parameterb (from 7 grid values
b0 · {

1
25 , 1

10 , 1
5 , 1, 5, 10, 25}). As can be seen, the performance of our method is relativelystable.

This greatly eases the difficulty of parameter tuning: in practice our algorithm gives reasonably
good performance by simply choosing the RBF kernel width as the averaged square pairwise sam-
ple distances (i.e.,b = b0), which can be observed from Figure 2 as well.
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Figure 2: Performance of different semi-supervised kernels w.r.t. the kernel parameter.

5 Conclusion

This paper proposed a new algorithm for semi-supervised kernel design. Unlike traditional methods
that directly use the eigenvectors of the graph Lapacian with a rectified spectrum, we propose to
compute the desired eigenvectors via propagating the idealkernel eigenfunction. The key observa-
tion is that, while eigenvectors from the empirical kernel matrix alone may contain inevitable flaw
due to various practical factors, computing them based on extrapolating the ideal kernel eigenfunc-
tion will be more reliable and less dependent on the choice ofempirical kernels. The extrapolating
process reflects important similarity relation encoded in the input data, and also takes into account
the alignment with the target concept. Our algorithm gives encouraging performance and the time
complexity is only linear in the same size. In the future we shall explore different ways for propa-
gating the ideal kernel information and combination of multiple kernels from different resources.
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